Rigidity and the Lower Bound Theorem for Doubly Cohen-Macaulay Complexes
نویسنده
چکیده
We prove that for d ≥ 3, the 1-skeleton of any (d− 1)-dimensional doubly Cohen-Macaulay (abbreviated 2-CM) complex is generically drigid. This implies that Barnette’s lower bound inequalities for boundary complexes of simplicial polytopes ([4],[3]) hold for every 2-CM complex of dimension ≥ 2 (see Kalai [8]). Moreover, the initial part (g0, g1, g2) of the g-vector of a 2-CM complex (of dimension ≥ 3) is an M -sequence. It was conjectured by Björner and Swartz [14] that the entire g-vector of a 2-CM complex is an M -sequence.
منابع مشابه
Vanishing of Ext-Functors and Faltings’ Annihilator Theorem for relative Cohen-Macaulay modules
et be a commutative Noetherian ring, and two ideals of and a finite -module. In this paper, we have studied the vanishing and relative Cohen-Macaulyness of the functor for relative Cohen-Macauly filtered modules with respect to the ideal (RCMF). We have shown that the for relative Cohen-Macaulay modules holds for any relative Cohen-Macauly module with respect to with ........
متن کاملFace ring multiplicity via CM-connectivity sequences
The multiplicity conjecture of Herzog, Huneke, and Srinivasan is verified for the face rings of the following classes of simplicial complexes: matroid complexes, complexes of dimension one and two, and Gorenstein complexes of dimension at most four. The lower bound part of this conjecture is also established for the face rings of all doubly Cohen-Macaulay complexes whose 1-skeleton’s connectivi...
متن کاملCohen-Macaulay-ness in codimension for simplicial complexes and expansion functor
In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.
متن کاملDouble homotopy Cohen-Macaulayness for the poset of injective words and the classical NC-partition lattice
In this paper we study topological properties of the poset of injective words and the lattice of classical non-crossing partitions. Specifically, it is shown that after the removal of the bottom and top elements (if existent) these posets are doubly Cohen-Macaulay. This extends the well-known result that those posets are shellable. Both results rely on a new poset fiber theorem, for doubly homo...
متن کاملGorenstein Injective Dimensions and Cohen-Macaulayness
Let (R,m) be a commutative noetherian local ring. In this paper we investigate the existence of a finitely generated R-module of finite Gorenstein dimension when R is Cohen-Macaulay. We study the Gorenstein injective dimension of local cohomology of complexes and next we show that if R is a non-Artinian Cohen-Macaulay ring, which does not have the minimal multiplicity, then R has a finite gener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 39 شماره
صفحات -
تاریخ انتشار 2008